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1 Results

Definition 1. E(s) is the number of coefficient pairs in Z2([0, s]) whose sum is even

E(s) =
∣∣{(λ1, λ2) ∈ Z2([0, s]) | λ1 + λ2 ≡ 0 mod 2}

∣∣
while O(s) is the number of coefficient pairs in Z2([0, s]) whose sum is odd

O(s) =
∣∣{(λ1, λ2) ∈ Z2([0, s]) | λ1 + λ2 ≡ 1 mod 2}

∣∣ .
For convenience, we call elements of the integer lattice even if the sum λ1 + λ2 is even, and call them
odd if the sum is odd.

Lemma 2. The functions E(s) and O(s) adhere to the following formulae

E(s) =

{
s2 + 2s+ 1, s ≡ 0 mod 2

s2, s ≡ 1 mod 2

O(s) =

{
s2, s ≡ 0 mod 2

s2 + 2s+ 1, s ≡ 1 mod 2.

Proposition 3. Given any positive integer s, there is no k >
⌊
s2

2

⌋
such that φ±(Z2 ×Z2k, [0, s]) = 2.

Lemma 4. Let s be a positive integer, and let d, x, y be positive integers such that

• s2 − d2 is even

• x is odd

• x+ y = s

• x and y are coprime

• 4xy = s2 − d2

and let G = Z2 × Zs2−d2 . For any element (a, b) ∈ G, there exist (λ1, λ2) ∈ Z2 such that λ1 · (0, x) +
λ2 · (1, y) = (a, b) and either

• λ1 ∈ [−2y + 1, 2y], λ2 ∈ [0, 2x− 1], and |λ1|+ |λ2| ≤ s; or

• |λ1|+ |λ2| ≤ s− 1.

Therefore φ±(G, [0, s]) = 2.

Proposition 5. Given positive integers s, k, let G = Z2 × Z2k. Then if s is odd, the equation

φ±(G, [0, s]) = 2

holds if and only if k ∈ [1, s
2−1
2 ].
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Proposition 6. Given positive integers s, k, we let G = Z2 × Z2k. Then the equation

φ±(G, [0, s]) = 2

holds if k ∈ [1, s
2−s
2 ].

Proposition 7. Given a positive integer s ≡ 0 mod 4, take some even k ∈ [ s
2−s
2 , s

2

2 ] and let G =
Z2 × Z2k. Then φ±(G, [0, s]) = 2.

Proposition 8. Given a positive integer s ≡ 2 mod 4, take some k ∈ [ s
2−s
2 , s

2

2 ] such that k ≡ 2 mod 4
and let G = Z2 × Z2k. Then φ±(G, [0, s]) = 2.

Conjecture 9. Given an even positive integer s, the only solutions k to the equation

φ±(Z2 × Z2k, [0, s]) = 2

are those in the preceding propositions.

Proposition 10. Given a positive integer s and a group G = Zp × Zpk for prime p ≥ 3 such that
φ±(G, [0, s]) = 2, there is some pair of the form B = {(1, x), (1, y)} ⊂ G such that [0, s]±B = G.

Proposition 11. Given a positive integer s and prime divisor p of 2s + 1, let x =
⌊
s
p

⌋
, y =

⌈
s
p

⌉
,

and k = 2xy. Then for the group G = Zp × Zpk and the subset A = {(1, x), (1, y)} ⊂ G, we have that
[0, s]±A = G. Therefore φ±(G, [0, s]) = 2.

Conjecture 12. The general conjecture on the maximal order of G for which φ±(G, [0, s]) = 2 is in
Béla’s notes.

2 Proofs

Lemma 2. The functions E(s) and O(s) adhere to the following formulae

E(s) =

{
s2 + 2s+ 1, s ≡ 0 mod 2

s2, s ≡ 1 mod 2

O(s) =

{
s2, s ≡ 0 mod 2

s2 + 2s+ 1, s ≡ 1 mod 2.

Proof. We begin with two identities derived from the table found in [1, p. 28] — one concerning the
subset Z2([0, s]) of the integer lattice,

|Z2([0, s])| = 2s2 + 2s+ 1, (1)

and a second concerning the size of an individual layer Z2(h) for some h ≥ 0,

|Z2(h)| =

{
4h, h ≥ 1

1, h = 0.
(2)

Because the set Z2([0, s]) can be partitioned into even and odd elements, the equation below follows
from Equation 1

E(s) +O(s) = 2s2 + 2s+ 1. (3)
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Given any h ∈ [0, s], it is clear that all the elements of the layer Z2(h) will be even if h is even and
odd if h is odd. With this fact and Equation 2, we calculate E(s) for even values of s:

E(s) = |Z2(0)|+ |Z2(2)|+ · · ·+ |Z2(s)|
= 1 + 4 · 2 + · · ·+ 4 · s
= 1 + 4 · (2 + 4 + · · ·+ s)

= 1 + 8 · (1 + 2 + · · ·+ s

2
)

= 1 + 8 ·
s
2 · (

s
2 + 1)

2

= 1 + 8 · s
2 + 2s

8

E(s) = s2 + 2s+ 1.

By Equation 3, this implies that O(s) = s2 for even values of s.

We now derive the formula for E(s) when s is odd. Clearly no element of the layer Z2(s) will be even,
so we have:

E(s) = E(s− 1)

E(s) = (s− 1)2 + 2(s− 1) + 1

E(s) = s2.

By Equation 3, we conclude that O(s) = s2 + 2s+ 1 for odd values of s.

Proposition 3. Given any positive integer s, there is no k >
⌊
s2

2

⌋
such that φ±(Z2 ×Z2k, [0, s]) = 2.

Proof. Given a positive integer s, we let G = Z2 × Z2k for some k >
⌊
s2

2

⌋
, noting that this implies

|G| > 2s2. Clearly a subset of the form A = {(0, x), (0, y)} ⊂ G can not span G. We partition the
subsets of size two into the following categories, and prove in turn that none of them can span G.

• A = {(0, x), (1, y)} where x is even;

• A = {(0, x), (1, y)} where x and y are odd;

• A = {(1, x), (1, y)} for arbitrary x and y; and

• A = {(0, x), (1, y)} where x is odd and y even.

Given any pair of the first form A = {(0, x), (1, y)} with x even, note that (0, 1) 6∈ [0, s]±A — thus A
does not span G.

Next, consider any pair of the second form, where x and y are both odd. For any coefficients (λ1, λ2) ∈
Z2([0, s]), let

(a, b) = λ1 · (0, x) + λ2 · (1, y)

and note that the parity of b is equal to that of λ1 + λ2. Therefore such a pair A will span no more
than E(s) elements of G with b even and O(s) elements with b odd. Because |G| > 2s2 there are
more than s2 elements of each parity, exceeding the upper bound represented by either E(s) or O(s),
according to the parity of s. The argument for pairs of the third form A = {(1, x), (1, y)} is the same,
but with regard to the first component a of the spanned element instead of b.

We now suppose for contradiction that there is a pair of the fourth form A = {(0, x), (1, y)} with x
odd and y even such that [0, s]±A = G. We will prove that the pair B = {(1, x), (1, y)} also spans G,
contradicting our above result. Because [0, s]±A = G there is a function f : G→ Z2([0, s]) such that,
letting (λ1, λ2) = f(a, b) for arbitrary (a, b) ∈ G, we have

(a, b) = λ1 · (0, x) + λ2 · (1, y).
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We define an analogous function g : G→ Z2([0, s]) by the formula

g(a, b) =

{
f(a, b), b is even,

f(a+ 1, b), b is odd.

We claim that with (λ1, λ2) = g(a, b) for arbitrary (a, b) ∈ G, we have

(a, b) = λ1 · (1, x) + λ2 · (1, y).

We first consider (a, b) ∈ G with b even, and let (λ1, λ2) = g(a, b) = f(a, b). By the definition of f , we
know that λ1 · x+ λ2 · y = b. Because x is odd and y is even, this in turn implies that λ1 is even. We
therefore have

λ1 · (1, x) + λ2 · (1, y) = λ1 · (0, x) + λ2 · (1, y) = (a, b).

In the case where b is odd, we let (λ1, λ2) = g(a, b) = f(a + 1, b). By similar reasoning to the above,
we know that λ1 is odd, and therefore that

λ1 · (1, x) + λ2 · (1, y) = λ1 · (0, x) + λ2 · (1, y) + (1, 0)

= (a+ 1, b) + (1, 0)

= (a, b)

as was to be shown. We therefore have that [0, s]±B = G, a contradiction, proving our final case.

Lemma 4. Let s be a positive integer, and let d, x, y be positive integers such that

• s2 − d2 is even

• x is odd

• x+ y = s

• x and y are coprime

• 4xy = s2 − d2

and let G = Z2 × Zs2−d2 . For any element (a, b) ∈ G, there exist (λ1, λ2) ∈ Z2 such that λ1 · (0, x) +
λ2 · (1, y) = (a, b) and either

• λ1 ∈ [−2y + 1, 2y], λ2 ∈ [0, 2x− 1], and |λ1|+ |λ2| ≤ s; or

• |λ1|+ |λ2| ≤ s− 1.

Therefore φ±(G, [0, s]) = 2.

Proof. For an arbitrary element (a, b) ∈ Z2×Zs2−d2 , we first show that there are coefficients (λ1, λ2) ∈
Z2 such that λ1 · (0, x) + λ2 · (1, y) = (a, b).

The span of (0, x) will form a subgroup H ≤ G of order s2−d2

x = 4y. This subgroup has |G|4y = 2x

corresponding cosets. The element (a, b) that we wish to span must lie in one of these cosets, so we
first show that each of the cosets can be reached by some multiple λ2 · (1, y).

For each µ ∈ [0, 2x− 1], the multiple µ · (1, y) reaches a different coset of H, implying that this set of
multiples reaches all 2x cosets of H: take two distinct µ1, µ2 ∈ [0, 2x− 1] and assume without loss of
generality that µ1 > µ2. µ1 ·(1, y) and µ2 ·(1, y) belong to different cosets because µ1 ·(1, y)−µ2 ·(1, y) =
(µ1 − µ2) · (1, y) 6∈ H. To see this, let µ′ = µ1 − µ2 ∈ [1, 2x − 1] and suppose for contradiction that
µ′ · (1, y) ∈ H. This would imply that

µ′ · (1, y) = c · (0, x)

for some integer c. Because x and y are coprime, the only µ′ ∈ [1, 2x− 1] that could satisfy the above
equation is x. But because x is odd, we know that

x · (1, y) = (1, xy) 6= c · (0, x)
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for any c. We therefore conclude that µ · (1, y) spans a different coset of H for each µ ∈ [0, 2x − 1],
and consequently that they span every coset.

We return to our element (a, b) ∈ Z2×Zs2−d2 . It must lie in some coset of H, so by our findings above
there must be some λ2 ∈ [0, 2x − 1] such that λ2 · (1, y) is in this same coset. Because each of these
cosets is of size 4y, there must be some λ1 ∈ [−2y + 1, 2y] such that

λ1 · (0, x) + λ2 · (1, y) = (a, b).

There is no guarantee, however, that (λ1, λ2) ∈ Z2([0, s]). Based on the constraints above, we have
only that

|λ1|+ |λ2| ≤ 2y + 2x− 1 = 2s− 1.

If |λ1| + |λ2| ≤ s, then we have found coefficients in Z2([0, s]) that span (a, b) and are done, having
proven the first case of our claim.

If, however, |λ1| + |λ2| ∈ [s + 1, 2s − 1], we show that there exist (λ′1, λ
′
2) ∈ Z2([0, s]) that span the

same element (a, b). We select these values as follows:

λ′1 =

{
λ1 − 2y, λ1 ≥ 0

λ1 + 2y, λ1 < 0
λ′2 = λ2 − 2x.

This selection of variables implies that |λ′1| = 2y − |λ1| and |λ′2| = 2x− |λ2|. Therefore

|λ′1|+ |λ′2| = 2y − |λ1|+ 2x− |λ2|
|λ′1|+ |λ′2| = 2(x+ y)− (|λ1|+ |λ2|)
|λ′1|+ |λ′2| = 2s− (|λ1|+ |λ2|) .

Because |λ1|+ |λ2| ∈ [s+ 1, 2s− 1], this implies that

|λ′1|+ |λ′2| ∈ [1, s− 1],

Proving that (λ′1, λ
′
2) span the original element (a, b) will thus prove that the second case of our claim

holds.

If λ1 ≥ 0, meaning λ′1 = λ1 − 2y, then

λ′1 · (0, x) + λ′2 · (1, y) = (λ1 − 2y) · (0, x) + (λ2 − 2x) · (1, y)

= [λ1 · (0, x) + λ2 · (1, y)]− [2y · (0, x) + 2x · (1, y)]

= (a, b)− (0, 4xy)

= (a, b)− (0, s2 − d2)

= (a, b)− (0, 0)

λ′1 · (0, x) + λ′2 · (1, y) = (a, b).

If λ1 < 0, meaning λ′1 = λ1 + 2y, then

λ′1 · (0, x) + λ′2 · (1, y) = (λ1 + 2y) · (0, x) + (λ2 − 2x) · (1, y)

= [λ1 · (0, x) + λ2 · (1, y)]− 2y · (0, x) + 2x · (1, y)

= (a, b)− (0, 2xy) + (0, 2xy)

λ′1 · (0, x) + λ′2 · (1, y) = (a, b).

Since in either case, the new (λ′1, λ
′
2) ∈ Z2([1, s− 1]) spans the same element (a, b), we have that our

arbitrary element (a, b) ∈ Z2 × Zs2−d2 is s-spanned by the elements (0, x) and (1, y), as was to be
shown.

Proposition 5. Given positive integers s, k, let G = Z2 × Z2k. Then if s is odd, the equation

φ±(G, [0, s]) = 2

holds if and only if k ∈ [1, s
2−1
2 ].
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Proof. Park’s Conjecture (proved previously) comprises the “only if” direction, so it suffices to prove
the “if” direction. We let our claimed spanning pair be A = {(0, x), (1, y)}, where

x =

{
s+1
2 , s ≡ 1 mod 4

s−1
2 , s ≡ 3 mod 4

y =

{
s−1
2 , s ≡ 1 mod 4

s+1
2 , s ≡ 3 mod 4.

We prove that A spans G for all such k by proving that it spans G for k = s2−1
2 , while paying attention

to the subset it spans in the direct product with the entire set of integers Z2 × Z. Proving that A

spans the subset Z2 × {0, 1, . . . , s
2−1
2 } ⊂ Z2 × Z will, by symmetry, prove our claim. We let k = s2−1

2
for the following.

The group G and the numbers x, y, s satisfy the hypothesis of Proposition 4. We take an arbitrary
(a, b) ∈ G with 0 ≤ b ≤ k and the coefficients λ1, λ2 that span this element. We prove that the same
coefficients λ1, λ2 will span (a, b) if we view it as an element of Z2 × Z.

Consider the first case, where λ1 ∈ [−2y + 1, 2y] and λ2 ∈ [0, 2x− 1]. Because we have that

−s2 + 1

2
< (−2y + 1) · x ≤ λ1 · x+ λ2 · y ≤ 2y · x+ (2x− 1) · y = 4xy − x < s2 − 1,

the only other (a, b′) ∈ Z2 × Z with b′ ≡ b mod 2k that could be spanned by λ1, λ2 is b′ = b − 2k,
which by our assumption that b ≤ k yields b′ ≤ −k. Given the specific bounds on λ1, λ2, our above
inequality shows that b′ ≤ −k cannot be spanned, and therefore the coefficients span (a, b) ∈ Z2 × Z.

In the second case, where |λ1|+ |λ2| ≤ s− 1, we have that λ1 · x+ λ2 · y ≥ − (s−1)(s+1)
2 = −k. In the

case where the coefficients span (a,−k), then −λ1,−λ2 will span (a, k) by symmetry. Therefore the
only element (a, b′) ∈ Z2 × Z spanned such that b′ ≡ b mod 2k is (a, b) ∈ Z2 × Z itself.

In both cases, the element (a, b) ∈ G is spanned as an element of Z2 × Z. The negatives of the
coefficients λ1, λ2 will span those elements (a, b) ∈ G such that k + 1 ≤ b ≤ 2k − 1. We therefore have

that for every k ∈ [1, s
2−1
2 ], the equation

φ±(Z2 × Z2k, [0, s]) = 2

holds.

Proposition 6. Given positive integers s, k, we let G = Z2 × Z2k. Then the equation

φ±(G, [0, s]) = 2

holds if k ∈ [1, s
2−s
2 ].

Proof. We already have a stronger result above when s is odd, so we confine ourselves to the case where
s is even. Because s− 1 is odd, we can apply Proposition 5 to show that the pair A = {(0, x), (1, y)}
spans Z2 × {0, 1, . . . , s

2−2s
2 } ⊂ Z2 × Z where

x =

{
s
2 , s ≡ 2 mod 4
s−2
2 , s ≡ 0 mod 4

y =

{
s−2
2 , s ≡ 2 mod 4

s
2 , s ≡ 0 mod 4.

Now take any (a, b) ∈ Z2 × Z with b ∈
[
s2−2s

2 + 1, s
2−s
2

]
. If s ≡ 2 mod 4, let λ1, λ2 be the coefficients

such that
λ1 · (0, x) + λ2 · (1, y) = (a, b− s

2
) and |λ1|+ |λ2| ≤ s− 1,

which exist by the above theorem. Then the coefficients λ1 + 1, λ2 are such that

(λ1 + 1) · (0, x) + λ2 · (1, y) = (a, b) and |λ1 + 1|+ |λ2| ≤ s.

If s ≡ 0 mod 4, then let λ1, λ2 be the coefficients such that

λ1 · (0, x) + λ2 · (1, y) = (a− 1, b− s

2
) and |λ1|+ |λ2| ≤ s− 1,
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which exist by the above theorem. Then the coefficients λ1, λ2 + 1 are such that

λ1 · (0, x) + (λ2 + 1) · (1, y) = (a, b) and |λ1|+ |λ2 + 1| ≤ s.

We have shown that the pair A spans the subset Z2 × {0, 1, . . . , s
2−s
2 }, proving our claim.

Proposition 7. Given a positive integer s ≡ 0 mod 4, take some even k ∈ [ s
2−s
2 , s

2

2 ] and let G =
Z2 × Z2k. Then φ±(G, [0, s]) = 2.

Proof. We prove the proposition by proving it for G = Z2 × Zs2−4, paying attention to the elements
spanned in the corresponding group Z2 × Z.

Let x = s−2
2 , y = s+2

2 , and d = 2. These values satisfy the hypotheses of Proposition 4 (x and y are
coprime because they are odd and differ by 2) so we apply it to yield the given results on the coefficients
(λ1, λ2) ∈ Z2([0, s]) spanning each element. Take some (a, b) ∈ G and let (λ1, λ2) ∈ Z2([0, s]) be the
coefficients that span it. In the first case specified by the theorem, we have that

λ1 · x+ λ2 · y ≥ −s ·
s− 2

2
≥ −s

2 + 2s

2
≡ s2 + 2s− 8

2
mod s2 − 4.

In the second case, where |λ1|+ |λ2| ≤ s− 1, we have that

λ1 · x+ λ2 · y ≥ −(s− 1) · s+ 2

2
≥ −s

2 − s+ 2

2
≡ s2 − s− 6

2
mod s2 − 4.

By the two inequalities above, we conclude that for any (a, b) ∈ G with b < s2−s−6
2 and spanning

coefficients λ1, λ2 the equality
λ1 · x+ λ2 · y = b

holds in the regular sense, not only mods2 − 4.

Now, let k = s2

2 and let H = Z2 × Z2k = Z2 × Zs2 . We now prove that the elements Z2 ×
{ s

2−s−6
2 , . . . , s

2

2 } ⊂ H are also spanned by the pair A = {(0, x), (1, y)}, paying attention to the
corresponding elements of Z2 × Z that are spanned. We do this by dividing the remaining elements
into four sequences.

We first address the sequence (i, s
2−s−6

2 + 2i) for i ∈ {0, 1, . . . , s+4
4 }. These elements are spanned by

the coefficients λ1 = s+2
2 − i, λ2 = s−4

2 + i, and are also spanned in Z2 × Z by the same coefficients.

Our second sequence is (1 + i, s
2−s−6

2 + 2i) for i ∈ {0, 1, . . . , s+4
4 }. These elements are spanned by the

coefficient pairs (λ1, λ2) = {(0, s− 3), (−1, s− 2), (−i,−s+ 1 + i)} for i ∈ {0, 1, . . . , s−44 }}.

Our third sequence is (i, s
2

2 − 2i) for i ∈ {0, 1, s+4
4 }, which are respectively spanned by the coefficients

( s
2 + i, s2 − i) ∈ Z2([0, s]).

Our fourth sequence is (1 + i, s
2

2 − 2i) for i ∈ {0, 1, . . . , s+4
4 }, which are respectively spanned by the

coefficients (−1 + i, s− 1− i) ∈ Z2([0, s]).

While the rest of the coefficients span their respective elements in Z2 × Z as well, for the coefficients
(−i,−s+ 1 + i) for i ∈ {0, 1, . . . , s+4

4 } we have

−i · x+ (−s+ 1 + i) · y =
−s2 − s+ 2

2
+ 2i

which is equivalent mod s2 to s2−s+2
2 +2i, but is not equal to it in the integer sense. Because this is the

only sequence for which this is the case, and successive elements of the same parity (first component)
differ by 4, this implies that these elements are spanned in every group Z2 ×Zs2−4i for i = 0, 1, . . . , s4 .
This proves our claim.

Proposition 8. Given a positive integer s ≡ 2 mod 4, take some k ∈ [ s
2−s
2 , s

2

2 ] such that k ≡ 2 mod 4
and let G = Z2 × Z2k. Then φ±(G, [0, s]) = 2.
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Proof. We prove the proposition by proving it for G = Z2 × Zs2−16, paying attention to the elements
spanned in the corresponding group Z2 × Z.

Let x = s−4
2 , y = s+4

2 , and d = 4. These values satisfy the hypotheses of Proposition 4 (x and y
are coprime because they are 2 mod 4 and differ by 4) so we apply it to yield the given results on
the coefficients (λ1, λ2) ∈ Z2([0, s]) spanning each element. Take some (a, b) ∈ G and let (λ1, λ2) ∈
Z2([0, s]) be the coefficients that span it. In the first case specified by the theorem, we have that

λ1 · x+ λ2 · y ≥ −s ·
s− 4

2
≥ −s

2 + 4s

2
≡ s2 + 4s− 32

2
mod s2 − 16.

In the second case, where |λ1|+ |λ2| ≤ s− 1, we have that

λ1 · x+ λ2 · y ≥ −(s− 1) · s+ 4

2
≥ −s

2 − 3s+ 4

2
≡ s2 − 3s− 28

2
mod s2 − 16.

By the two inequalities above, we conclude that for any (a, b) ∈ G with b < s2−3s−28
2 and spanning

coefficients λ1, λ2 the equality
λ1 · x+ λ2 · y = b

holds in the regular sense, not only mods2 − 16.

Now, let k = s2

2 and let H = Z2 × Z2k = Z2 × Zs2 . We now prove that the elements Z2 ×
{ s

2−3s−28
2 , . . . , s

2

2 } ⊂ H are also spanned by the pair A = {(0, x), (1, y)}, paying attention to the
corresponding elements of Z2 × Z that are spanned. We do this by dividing the remaining elements
into eight sequences.

start of sequence (λ1, λ2)(
0, s

2−3s−28
2

)
( s+4

2 − i,
s−10

2 + i), 0 ≤ i ≤
⌊
3s+28

8

⌋
(

1, s
2−3s−28

2

)
(−i, s− 7 + i), 0 ≤ i ≤ 3 (−i,−s+ 1 + i), 0 ≤ i ≤

⌊
3s−4

8

⌋
(

0, s
2

2

)
(−2 + i, s− 2− i), 0 ≤ i ≤

⌊
3s+28

8

⌋
(

1, s
2

2

) (
s
2 + i, s2 − i

)
, 0 ≤ i ≤ s

2 (−3 + i, s− 5− i) , 0 ≤ i ≤
⌊−s+20

8

⌋
(

0, s
2−s−4

2

) (
s
2 − i,

s−2
2 + i

)
, −

⌊
s+28
8

⌋
≤ i ≤ s−2

4(
1, s

2−2s
2

) (
s−2
2 − i,

s−2
2 + i

)
, −s+2

4 ≤ i ≤ s−2
4(

0, s
2−s−4

2

)
(−2 + i, s− 3− i) , 0 ≤ i ≤

⌊
s+12
4

⌋
(1− i,−s+ 2 + i) , 0 ≤ i ≤

⌊
s−4
8

⌋
(

1, s
2−2s+8

2

)
(−i,−s+ 2 + i) , 0 ≤ i ≤

⌊
s−4
4

⌋
(−2 + i, s− 4− i) , 0 ≤ i ≤

⌊
s+28
8

⌋
A lot of algebra will show that these coefficients (λ1, λ2) will span all remaining elements in the group.
In the second, seventh, and eighth sequence there are elements that are spanned mods2 in G but not
spanned in Z2 × Z. For each of these negatively spanned elements (a, b), the element (a, b + 8) will
also be negatively spanned in the same sequence. Thus, reducing k by 4 will leave the same element
still spanned. Our claim follows.

Proposition 10. Given a positive integer s and a group G = Zp × Zpk for prime p ≥ 3 such that
φ±(G, [0, s]) = 2, there is some pair of the form B = {(1, x), (1, y)} ⊂ G such that [0, s]±B = G.

Proof. Given our assumption that φ±(G, [0, s]) = 2, there is some pair A = {(a, x), (b, y)} ⊂ G such
that [0, s]±A = G. Define the function fA : Z2([0, s])→ G by the formula

fA(λ1, λ2) = λ1 · (a, x) + λ2 · (b, y).
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Then our statement that [0, s]±A = G is equivalent to the statement that fA is surjective. We may
therefore choose some subset T ⊂ Z2([0, s]) with |T | = |G| such that the restriction of fA to the domain
T , which we call gA : T → G, is bijective.

We now divide the problem into two cases depending on A.

Case I

If a = b, i.e. A = {(a, x), (a, y)} for some a ∈ Zp, then the pair B = {(1, x), (1, y)} also s-spans G. To
prove this, we show that the bijectivity of gA : T → G implies the injectivity and — because |T | = |G|
— the bijectivity of gB : T → G defined analogously as

gB(λ1, λ2) = λ1 · (1, x) + λ2 · (1, y).

We suppose for contradiction that gB is not injective, and that there exist therefore some distinct
(λ1, λ2), (µ1, µ2) ∈ T such that gB(λ1, λ2) = gB(µ1, µ2). By assumption, gA(λ1, λ2) 6= gA(µ1, µ2).

All arithmetic to follow is conducted modp. By our equality in gB , we have that

1. λ1 + λ2 = µ1 + µ2

2. λ1 · x+ λ2 · y = µ1 · x+ µ2 · y.

The inequality in gA together with equality (2) implies further that

3. λ1 · a+ λ2 · a 6= µ1 · a+ µ2 · a.

But multiplying equation (2) by a clearly contradicts (3), so gB must be injective.

Case II

If a 6= b, we assume without loss of generality that (continuing our arithmetic mod p) x 6= y. This is be-
cause the set A = {(a, x), (b, y)} is an s-spanning set for G, which clearly implies that {(a, x), (−b,−y)}
is as well. Because p ≥ 3, we have that y 6= −y, and we can choose whichever one is not equal to x.

As above, we define for the spanning pair B = {(1, x), (1, y)} a spanning function gB : T → G by the
formula

gB(λ1, λ2) = λ1 · (1, x) + λ2 · (1, y).

We suppose for contradiction that gB is not injective, and that there exist therefore some distinct
(λ1, λ2), (µ1, µ2) ∈ T such that gB(λ1, λ2) = gB(µ1, µ2). By assumption, gA(λ1, λ2) 6= gA(µ1, µ2).

By our equality in gB , we have that

1. λ1 + λ2 = µ1 + µ2

2. λ1 · x+ λ2 · y = µ1 · x+ µ2 · y.

The inequality in gA together with equality (2) implies further that

3. λ1 · a+ λ2 · b 6= µ1 · a+ µ2 · b.

Letting c = a− b 6= 0, (3) yields

(λ1 + λ2) · b+ λ1 · c 6= (µ1 + µ2) · b+ µ1 · c,

which implies by (1) that λ1 · c 6= µ1 · c, and therefore λ1 6= µ1.

However, letting z = x− y 6= 0 yields by (1) and (2) that

(λ1 + λ2) · y + λ1 · z = (µ1 + µ2) · y + µ1 · z
λ1 · z = µ1 · z
λ1 = µ1,

contradicting our result above that λ1 6= µ1; consequently gB is injective and therefore bijective.
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Proposition 11. Given a positive integer s and prime divisor p of 2s + 1, let x =
⌊
s
p

⌋
, y =

⌈
s
p

⌉
,

and k = 2xy. Then for the group G = Zp × Zpk and the subset A = {(1, x), (1, y)} ⊂ G, we have that
[0, s]±A = G. Therefore φ±(G, [0, s]) = 2.

Proof. First observe that by our definitions above we have that |〈(1, x)〉| = 2py. There are therefore
|G|
2py = px cosets of the span of (1, x). We prove by contradiction that for each coefficient λ2 ∈ [0, px−1],

the product λ2 · (1, y) is contained in a different coset.

Suppose for contradiction that there exist some µ1, µ2 with 0 ≤ µ1 < µ2 ≤ px− 1 such that µ1 · (1, y)
and µ2 · (1, y) are in the same coset. Letting µ = µ2 − µ1 ∈ [1, px − 1], this would imply that
µ · (1, y) ∈ 〈(1, x)〉. We show that there is no a ∈ Z such that a · (1, x) = µ · (1, y), proving that µ · (1, y)
is not in the span of (1, x).

Suppose that such an a ∈ Z did exist; it would then satisfy the following two properties

1. a ≡ µ mod p

2. ax ≡ µy mod pk

Noting that y = x+ 1, the second equation implies that

µ(x+ 1) ≡ ax mod 2pxy

µ ≡ (a− µ) · x mod 2pxy

which, because a ≡ µ mod p, implies that µ is a multiple of px. This violates the assumption that
µ ∈ [1, px−1], as there are no multiples of px in this range. Therefore for any distinct µ1, µ2 ∈ [0, px−1],
the elements µ1 · (1, y) and µ2 · (1, y) are in different cosets of 〈(1, x)〉, as we wished to show.

For any element g ∈ G, there then exists some λ2 ∈ [0, px − 1] such that λ2 · (1, y) and g are in the
same coset of 〈(1, x)〉. Recalling that |〈(1, x)〉| = 2py, there is then some λ1 ∈ [−py + 1, py] such that
λ1 · (1, x) + λ2 · (1, y) = g. We then have that

|λ1|+ |λ2| ≤ py + px− 1 = p(x+ y)− 1 = 2s− 1.

If |λ1| + |λ2| ≤ s, then we have found coefficients that span the element g and are done. If, however,
we have that |λ1|+ |λ2| ∈ [s+1, 2s−1], we define new coefficients λ′1, λ

′
2 that also span g while staying

within the desired bounds.

Let

λ′1 =

{
λ1 − py, λ1 ≥ 0

λ1 + py, λ1 < 0
λ′2 = λ2 − px.

Both λ′1 ≡ λ1 mod p and λ′2 ≡ λ2 mod p, so the first component of the element spanned remains
unchanged. We now check the second component, first in the case where λ1 ≥ 0

λ′1x+ λ′2y = (λ1 − py) · x+ (λ2 − px) · y
= λ1x+ λ2y − 2pxy

= λ1x+ λ2y − pk
λ′1x+ λ′2y ≡ λ1x+ λ2y mod pk.

Therefore λ′1, λ
′
2 span the same element. In the case where λ1 < 0, we have that

λ′1x+ λ′2y = (λ1 + py) · x+ (λ2 − px) · y
= λ1x+ λ2y + pxy − pxy
= λ1x+ λ2y

λ′1x+ λ′2y ≡ λ1x+ λ2y mod pk.

Again, λ′1, λ
′
2 span the same element g ∈ G as the previous coefficients λ1, λ2.
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Finally, we check that |λ′1|+|λ′2| ≤ s, proving that the element g is spanned by the elements (1, x), (1, y).

|λ′1|+ |λ′2| = py − |λ1|+ px− |λ2|
|λ′1|+ |λ′2| = py + px− (|λ1|+ |λ2|)
|λ′1|+ |λ′2| = 2s+ 1− (|λ1|+ |λ2|)
|λ′1|+ |λ′2| ≤ s,

which proves our claim.
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