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1 Definitions and Previous Results

Definition 1. For a positive m and a nonnegative h, a layer of the m-dimensional
integer lattice is defined as

Zm(h) = {(λ1, λ2, . . . , λm) ∈ Zm : |λ1|+ |λ2|+ . . .+ |λm| = h}.

For a given s ≥ 0, we also employ an interval notation to describe subsets of the
integer lattice

Zm([0, s]) = {(λ1, λ2, . . . , λm) ∈ Zm : |λ1|+ |λ2|+ . . .+ |λm| ∈ [0, s]}.

Definition 2. Let s be a positive integer and let A = {a1, a2, . . . , am}. The [0, s]-fold
signed sumset of A is defined as

[0, s]±A = {λ1 · a1 + λ2 · a2 + · · ·+ λm · am : (λ1, λ2, . . . , λm) ∈ Zm([0, s])}.

Definition 3. Let s be a positive integer, G be a group, and A a subset of G. Then
A spans G if and only if [0, s]±A = G. In this case we call A a spanning set of G,
and denote by φ± the size of the smallest spanning set of G for a given s:

φ±(G, [0, s]) = min{|A| : [0, s]±A = G}.
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Our work focuses on groups of the form G = Z2×Z2k for which φ±(G, [0, s]) = 2.
We include here Park’s results in [2]:

Theorem 4 (Park, 2020). Given a positive integer s, let k = s2

2 when s is even and

k = s2−1
2 when s is odd. Then φ±(Z2 × Z2k, [0, s]) = 2, where the spanning set of

Z2 ×Z2k is {(0, 1), (1, s− 1)} when s is even and {(1, s−12 ), (1, s+1
2 )} when s is odd.

Conjecture 5 (Park, 2020). The value of k found in the theorem above is the largest
possible k for which φ±(Z2 × Z2k, [0, s]) = 2.

2 Summary of New Findings

We proved the above conjecture in [1], placing a sharp upper bound on solutions k
to the equation for a given s.

Our main results are propositions 11, 13, 15, 19, and 20, all of which are made
possible by theorem 6 below. Together they demonstrate the following solutions:

• s is odd: {k ∈ N : k ≤ s2−1
2 }

• s ≡ 0 mod 4: {k ∈ N : k ≤ s2−s
2 } ∪ {k ∈ N : k ≤ s2

2 and k is even}

• s ≡ 2 mod 4: {k ∈ N : k ≤ s2−s
2 } ∪ {k ∈ N : k ≤ s2−16

2 and k ≡ 2 mod 4} ∪
{k = s2

2 }.

We are in the process of proving the case where s ≡ 2 mod 4 and k = s2−8
2 ,

which we conjecture to be the final class of solutions.

Because of Park’s conjectured upper bound which we proved in [1], the case for
odd s is solved comprehensively. There is only a linear amount of cases to be proved
(either as solutions or non-solutions) for even s compared to the quadratic number
of possible solutions.

3 Results

Theorem 6. Let s be a positive integer, and let d, x, y be positive integers such that
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• s2 − d2 is even

• x is odd

• x+ y = s

• x and y are coprime

• 4xy = s2 − d2

then the group Z2 × Zs2−d2 is s-spanned by the pair of elements {(0, x), (1, y)};
therefore

φ±(Z2 × Zs2−d2 , [0, s]) = 2.

Proof. For an arbitrary element (a, b) ∈ Z2 × Zs2−d2 , we first show that there are
coefficients (λ1, λ2) ∈ Z2 such that λ1 · (0, x) + λ2 · (1, y) = (a, b).

The span of (0, x) will form a subgroup H ≤ G of order s2−d2
x = 4y. This

subgroup has |G|4y = 2x corresponding cosets. The element (a, b) that we wish to
span must lie in one of these cosets, so we first show that each of the cosets can be
reached by some multiple λ2 · (1, y).

For each µ ∈ [0, 2x − 1], the multiple µ · (1, y) reaches a different coset of H,
implying that this set of multiples reaches all 2x cosets of H: take two distinct
µ1, µ2 ∈ [0, 2x−1] and assume without loss of generality that µ1 > µ2. µ1 ·(1, y) and
µ2·(1, y) belong to different cosets because µ1·(1, y)−µ2·(1, y) = (µ1−µ2)·(1, y) 6∈ H.
To see this, let µ′ = µ1 − µ2 ∈ [1, 2x − 1] and suppose for contradiction that
µ′ · (1, y) ∈ H. This would imply that

µ′ · (1, y) = c · (0, x)

for some integer c. Because x and y are coprime, the only µ′ ∈ [1, 2x− 1] that could
satisfy the above equation is x. But because x is odd, we know that

x · (1, y) = (1, xy) 6= c · (0, x)

for any c. We therefore conclude that µ · (1, y) spans a different coset of H for each
µ ∈ [0, 2x− 1], and consequently that they span every coset.

We return to our element (a, b) ∈ Z2 × Zs2−d2 . It must lie in some coset of H,
so by our findings above there must be some λ2 ∈ [0, 2x− 1] such that λ2 · (1, y) is
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in this same coset. Because each of these cosets is of size 4y, there must be some
λ1 ∈ [−2y + 1, 2y] such that

λ1 · (0, x) + λ2 · (1, y) = (a, b).

There is no guarantee, however, that (λ1, λ2) ∈ Z2([0, s]). Based on the constraints
above, we have only that

|λ1|+ |λ2| ≤ 2y + 2x− 1 = 2s− 1.

If |λ1| + |λ2| ≤ s, then we have found coefficients in Z2([0, s]) that span (a, b) and
are done.

If, however, |λ1|+|λ2| ∈ [s+1, 2s−1], we show that there exist (λ′1, λ
′
2) ∈ Z2([0, s])

that span the same element (a, b). We select these values as follows:

λ′1 =

{
λ1 − 2y, λ1 ≥ 0

λ1 + 2y, λ1 < 0
λ′2 = λ2 − 2x.

This selection of variables implies that |λ′1| = 2y−|λ1| and |λ′2| = 2x−|λ2|. Therefore

|λ′1|+ |λ′2| = 2y − |λ1|+ 2x− |λ2|
|λ′1|+ |λ′2| = 2(x+ y)− (|λ1|+ |λ2|)
|λ′1|+ |λ′2| = 2s− (|λ1|+ |λ2|) .

Because |λ1|+ |λ2| ∈ [s+ 1, 2s− 1], this implies that

|λ′1|+ |λ′2| ∈ [1, s− 1],

placing (λ′1, λ
′
2) within the acceptable bounds for Z2([0, s]).

It remains only to prove that (λ′1, λ
′
2) span the same element (a, b) as the original

coefficients. If λ1 ≥ 0, meaning λ′1 = λ1 − 2y, then

λ′1 · (0, x) + λ′2 · (1, y) = (λ1 − 2y) · (0, x) + (λ2 − 2x) · (1, y)

= [λ1 · (0, x) + λ2 · (1, y)]− [2y · (0, x) + 2x · (1, y)]

= (a, b)− (0, 4xy)

= (a, b)− (0, s2 − d2)
= (a, b)− (0, 0)

λ′1 · (0, x) + λ′2 · (1, y) = (a, b).
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If λ1 < 0, meaning λ′1 = λ1 + 2y, then

λ′1 · (0, x) + λ′2 · (1, y) = (λ1 + 2y) · (0, x) + (λ2 − 2x) · (1, y)

= [λ1 · (0, x) + λ2 · (1, y)]− 2y · (0, x) + 2x · (1, y)

= (a, b)− (0, 2xy) + (0, 2xy)

λ′1 · (0, x) + λ′2 · (1, y) = (a, b).

Since in either case, the new (λ′1, λ
′
2) ∈ Z2([0, s]) spans the same element (a, b),

we have that our arbitrary element (a, b) ∈ Z2×Zs2−d2 is s-spanned by the elements
(0, x) and (1, y), as was to be shown.

Lemma 7. Let s be a positive integer, G = Z2 × Z2k be a group, and A = {p, q}
be a pair of elements. Then A is a [0, s] signed spanning set for G if and only if it
spans the subset Z2 × {0, 1, . . . , k} ⊂ G.

Proof. The “only if” direction is clearly true, so we prove the “if” statement. For
any g ∈ G, either g or −g is in the set Z2 × {0, 1, . . . , k} In the latter case, take the
coefficients (λ1, λ2) ∈ Z2([0, s]) that span −g and observe that

−λ1 · p+−λ2 · q = −(λ1 · p+ λ2 · q)
−λ1 · p+−λ2 · q = −(−g)

−λ1 · p+−λ2 · q = g.

Therefore g can also be spanned by the spanning set A, proving our claim.

Definition 8. Given some s ≥ 1, a group G = Z2 × Z2k, a pair of elements
A = {(a, x), (b, y)}, and some (c, z) ∈ G, we say that the element (c, z) is directly
spanned if there exist (λ1, λ2) ∈ Z2([0, s]) such that

λ1 · a+ λ2 · b ≡ c mod 2 and λ1 · x+ λ2 · y = z.

Definition 9. Given some s ≥ 1, a group G = Z2 × Z2k, a pair of elements
A = {(a, x), (b, y)}, and some (c, z) ∈ G, we say that the element (c, z) is negatively
spanned if there exist (λ1, λ2) ∈ Z2([0, s]) such that

λ1 · a+ λ2 · b ≡ c mod 2 and λ1 · x+ λ2 · y = −1 · 2k + z.

Lemma 10. Let Z2 × Z2k be a group with a pair of elements A = {(a, x), (b, y)}
that directly s-span some element (c, z) ∈ Z2 × Z2k. Then for any k′ ∈ N the
corresponding element (c, z) ∈ Z2 × Z2k′ is also directly s-spanned by A.
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Proof. The first component of the element spanned λ1 · a + λ2 · b ≡ c mod 2 will
clearly not change between the two groups, and by the definition of direct spanning
we have that

λ1 · x+ λ2 · y = z ≡ z mod 2k′,

so the element (c, z) is directly spanned in both groups.

Proposition 11. Given an odd s, the equation

φ±(Z2 × Z2k, [0, s]) = 2

holds if and only if k ∈ [1, s
2−1
2 ].

Proof. Given some odd s, we let k = s2−1
2 and let

x =

{
s+1
2 , s ≡ 1 mod 4

s−1
2 , s ≡ 3 mod 4

y =

{
s−1
2 , s ≡ 1 mod 4

s+1
2 , s ≡ 3 mod 4.

Our choice of x and y satisfies the hypothesis of theorem 6, which we apply to prove
that the set A = {(0, x), (1, y)} s-spans Z2 × Zs2−1. We have already proven in [1]

that any solution with odd s must have k ≤ s2−1
2 , so we next prove that the subset

Z2×{0, 1, . . . , s
2−1
2 −1} is directly spanned by A, which by lemmas 7 and 10 suffices

to prove our claim.

For a given (λ1, λ2) ∈ Z2([0, s]) that spans a certain element of Z2 × Zs2−1, we
let µ1 be the coefficient corresponding to s−1

2 and µ2 be the one corresponding to
s+1
2 , i.e.

µ1 =

{
λ2, s ≡ 1 mod 4

λ1, s ≡ 3 mod 4
µ2 =

{
λ1, s ≡ 1 mod 4

λ2, s ≡ 3 mod 4.

Because µ1 · s−12 + µ2 · s+1
2 ≥ −s2−s

2 for all (µ1, µ2) ∈ Z2([0, s]), then for any

(a, b) ∈ Z2 × {0, 1, . . . , s
2−1
2 − 1} that is negatively spanned by such a (µ1, µ2), we

have that b ∈ [ s
2−s−2

2 , s
2−1
2 − 1]. For a negatively spanned b in this range we know

that µ1 + µ2 = −s. For suppose that µ1 + µ2 ≥ −s+ 1, and observe that

µ1 ·
s− 1

2
+ µ2 ·

s+ 1

2
≥ (−s+ 1) · s+ 1

2
=
−s2 + 1

2
≡ s2 − 1

2
mod s2 − 1,

which is outside of our established range for negatively spanned b.
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For a given (a, b) negatively spanned by some (µ1, µ2) ∈ Z2([0, s]), we divide the
remaining work into two cases. In the case where µ2 = −s and therefore µ1 = 0, we
have that

(s− 2) · s+ 1

2
=
s2 − s− 2

2

which is equivalent mods2 − 1 to

−s · s+ 1

2
=
−s2 − s

2
≡ s2 − s− 2

2
mod s2 − 1.

Furthermore, because −s ≡ (s − 2) mod 2 the coefficients µ′1 = 0, µ′2 = s − 2 will
directly span the same element of Z2×Zs2−1 which the coefficients µ1 = 0, µ2 = −s
negatively span.

In the second case, where µ2 ≥ −s+1 and therefore µ1 ≤ −1, let µ′1 = µ1 +s+1
and µ′2 = µ2 + s− 1. We first note that

µ′1 ·
s− 1

2
+ µ′2 ·

s+ 1

2
= (µ1 + s+ 1) · s− 1

2
+ (µ2 + s− 1) · s+ 1

2

=

(
µ1 ·

s− 1

2
+ µ2 ·

s+ 1

2

)
+

(s+ 1)(s− 1)

2
+

(s− 1)(s+ 1)

2

= b− (s2 − 1) + (s2 − 1)

= b.

Taken together with the fact that µ′1 ≡ µ1 mod 2 and µ′2 ≡ µ2 mod 2, the above
implies that (µ′1, µ

′
2) directly spans the element (a, b) in question. We now prove

that (µ′1, µ
′
2) ∈ Z2([0, s]), keeping in mind that µ2 ≥ −s+ 1

|µ′1|+ |µ′2| = |µ1 + s+ 1|+ |µ2 + s− 1|
= (µ1 + s+ 1) + (µ2 + s− 1)

= (µ1 + µ2) + s+ 1 + s− 1

= −s+ 2s− 2

= s− 2.

We have shown that our new coefficients (µ′1, µ
′
2) ∈ Z2([0, s]) directly span the

element in question (a, b). This proves that any element in our subset is directly
spanned by A, which as shown above suffices to prove our claim.

Proposition 12. For a given positive integer s ≡ 0 mod 4, let G = Z2 × Zs2−4.
Then the pair of elements A = {(0, x), (1, y)} where

x =
s− 2

2
and y =

s+ 2

2
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is an s-spanning pair for G. Therefore

φ±(Z2 × Zs2−4, [0, s]) = 2.

Proof. Our proposition is a particular case of theorem 6, where d = 2. Because
s ≡ 0 mod 4, we know that x and y are both odd; because they differ by 2, this
further implies that they are coprime. The hypothesis of theorem 6 thus holds,
proving our claim.

Proposition 13. For a given positive integer s ≡ 0 mod 4, take any k ≤ s2−s
2 . The

group Z2 × Z2k can be s-spanned by the pair A = {(0, x), (1, y)} where

x =
s− 2

2
and y =

s+ 2

2
,

and consequently φ±(Z2 × Z2k, [0, s]) = 2.

Proof. It suffices by lemmas 7 and 10 to show that for k = s2−s
2 , the subset Z2 ×

{0, 1, . . . , k} can be directly spanned by A. We proved above in proposition 12 that
the group Z2 × Zs2−4 is spanned by A. Observe that for any (λ1, λ2) ∈ Z2([0, s])

−s2 − 2s

2
≤ λ1 · x+ λ2 · y ≤

s2 + 2s

2
,

so any element (a, b) ∈ Z2×Zs2−4 that is not directly spanned will instead be nega-

tively spanned by definition 9 above. Taking an arbitrary (a, b) ∈ Z2×{0, . . . , s
2−s
2 }

that is negatively spanned by some (λ1, λ2) ∈ Z2([0, s]), we will show that this same
element is directly spanned by the coefficients (λ1, λ2 + 4x) ∈ Z2([0, s]). We first
observe that

λ1 · x+ (λ2 + 4x) · y = (λ1 · x+ λ2 · y) + 4x · y
λ1 · x+ (λ2 + 4x) · y = −1 · (s2 − 4) + b+ s2 − 4

λ1 · x+ (λ2 + 4x) · y = b.

Because 4x is even, we also have that λ2+4x ≡ a mod 2, meaning the new coefficients
directly span (a, b). It still remains to be shown that the new coefficients are in
Z2([0, s]).

Because the element is negatively spanned and b ∈ [0, s
2−s
2 ], we know that its

coefficients were generated by the second step in theorem 6, so λ2 < 0 and |λ1| +
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|λ2| ∈ [1, s − 1]. We will prove that λ2 ≤ −2x, which implies that the above
coefficients are also in the bounds i.e.

|λ1|+ |λ2 + 4x| ≤ s.

Suppose that λ2 = −2x+ 1 = −s+ 3 and that λ1 = −2. This is the coefficient
pair with the lowest spanned value λ1 · x + λ2 · y such that −2x < λ2 < 0 and
(λ1, λ2) ∈ Z2([1, s− 1]). Calculating this value

λ1 · x+ λ2 · y = −2 · s− 2

2
+ (−s+ 3) · s+ 2

2

= −s+ 2 +
−s2 + s+ 6

2

=
−s2 − s+ 10

2

≡ s2 − s+ 2

2
mod s2 − 4,

we see that it is outside the assumed range b ∈ [0, s
2−s
2 ]. Therefore for all (λ1, λ2) ∈

Z2([1, s − 1]) that negative span an element with b in this range, we know that
λ2 ≤ −2x. Hence (λ1, λ2 + 4x) ∈ Z2([0, s]) directly spans the element (a, b) while
staying within the bounds for spanning coefficients, which as shown above suffices
to prove our claim.

Lemma 14. Let (a, b) ∈ Z2 × Zs2−4 such that b ∈ [ s
2−s+2

2 , s
2+s−4

2 ]. If (a, b) is
negatively spanned by the pair A that spans Z2×Zs2−4, then A also negatively spans
(a, b+ 4).

Proof. Take any negatively spanned element (a, b) within the specified range, and
consider its spanning coefficients (λ1, λ2) ∈ Z2([0, s]). We first observe that the
coefficients (λ1−2, λ2+2) will span the element (a, b+4), as λ2+2 ≡ λ2 ≡ a mod 2,
and

(λ1 − 2) · s− 2

2
+ (λ1 + 2) · s+ 2

2
= b− 2 · s− 2

2
+ 2 · s+ 2

2

(λ1 − 2) · s− 2

2
+ (λ1 + 2) · s+ 2

2
= b+ 4.

We now prove that these coefficients are also in Z2([0, s]). We begin by proving
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that λ2 ≤ −2. First, if λ2 = 0, then any value of λ1 can not span (a, b), for

λ1 · x+ 0 · y ≥ −s · s− 2

2

=
−s2 + 2s

2

≡ s2 + 2s− 8

2
mod s2 − 4

which is outside of the specified range for b. Second, if λ2 6= 0 but λ2 ≥ −1, then
λ1 ≥ −s+ 1 which implies

λ1 · x+ λ2 · y ≥ (−s+ 1) · s− 2

2
+−1 · s+ 2

2

=
−s2 + 3s− 2

2
− s+ 2

2

=
−s2 + 2s− 4

2

≡ s2 + 2s− 12

2
mod s2 − 4,

which is also outside of the specified range for b. We have proved that λ2 ≤ −2,
implying that |λ2 + 2| = |λ2| − 2. Clearly we also have that |λ1 − 2| ≤ |λ1| + 2,
meaning

|λ1 − 2|+ |λ2 + 2| ≤ |λ1|+ 2 + |λ2| − 2 = |λ1|+ |λ2| ≤ s.

Therefore (λ1 − 2, λ2 + 2) ∈ Z2([0, s]), proving our claim.

Proposition 15. For a positive integer s ≡ 0 mod 4, let k be an even integer
k ≤ s2−4

2 . Then the pair A from above s-spans Z2 × Z2k implying

φ±(Z2 × Z2k, [0, s]) = 2.

Proof. Take some i ∈ N, and let ki = s2−4−4i
2 . We know by proposition 13 that all

elements (a, b) with b ≤ s2−s
2 can be directly spanned by A, and thus are spanned in

Z2×Z2k for any value of k. Next, we prove that A spans any (a, b) ∈ Z2×Z2ki such

that b ∈ [ s
2−s+2

2 , ki]. We first note that if such an element exists, then 4i < s − 4.
If this element is directly spanned in Z2 × Zs2−4, then it is also directly spanned in
Z2 × Z2ki . If it is negatively spanned, then a more involved argument is required.

We prove that the coefficients that span (a, b + 4i) ∈ Z2 × Zs2−4 will span
(a, b) ∈ Z2 × Z2ki . First, consider the coefficients (λ1, λ2) that negatively span
(a, b) ∈ Z2 × Zs2−4.
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Because b ∈ [ s
2−s+2

2 , ki], we have that

ki ≥
s2 − s+ 2

2
s2 − 4− 4i

2
≥ s2 − s+ 2

2
4i < s− 4.

We inductively apply lemma 14 up to (a, b + 4i) and call its spanning coefficients
(µ1, µ2). The lemma holds for all b+ 4, b+ 8, . . . , b+ 4i because 4i < s− 4 implies

that b+ 4i < s2+s−6
2 , within the range where lemma 14 applies.

Finally, we show that the coefficients (µ1, µ2) that span (a, b+ 4i) ∈ Z2 × Zs2−4
will span (a, b) ∈ Z2 × Z2ki . Clearly the value a of the spanned element will not
change between the two groups, as the spanning pair A and the value µ2 have not.
Next, because the coefficients negatively span (a, b+ 4i) ∈ Z2 × Zs2−4, we have

µ1 ·
s− 2

2
+ µ2 ·

s+ 2

2
= −1 · (s2 − 4) + b+ 4i

µ1 ·
s− 2

2
+ µ2 ·

s+ 2

2
= −1 · (s2 − 4− 4i) + b,

meaning (µ1, µ2) ∈ Z2([0, s]) will span the element (a, b) ∈ Z2 × Z2ki .

Proposition 16. Let s ≡ 2 mod 4 be a positive integer, and let G = Z2 × Zs2−16.
Then the pair of elements A = {(0, x), (1, y)} where x = s−4

2 and y = s+4
2 spans G,

meaning
φ±(Z2 × Zs2−16, [0, s]) = 2.

Proof. Our proposition is a particular case of theorem 6, where d = 4. Because
s ≡ 2 mod 4, we know that x and y are both odd; because they differ by 4, this
further implies that they are coprime. The hypothesis of theorem 6 thus holds,
proving our claim.

Proposition 17. Let s ≡ 2 mod 4 be a positive integer, and let G = Z2 × Zs2−16.

Then any (a, b) ∈ G with b ∈ {0, 1, . . . , s2−4s+6
2 } can be directly spanned by A =

{(0, x), (1, y)} where x = s−4
2 and y = s+4

2 .

Proof. Proposition 16 establishes that A spans the group G. Each element in our
specified subset is either directly or negatively spanned, so we show that the neg-
atively spanned ones have another set of spanning coefficients in Z2([0, s]) that
directly span them.
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Let (λ1, λ2) ∈ Z2([0, s]) be the coefficients that negatively span some element

(a, b) with b ≤ s2−4s+6
2 . We first show that λ2 ≤ −2x. Assume for contradiction

that λ2 ≥ −2x+ 1 = −s+ 5, and therefore that λ1 ≥ −5. This implies that

λ1 · x+ λ2 · y ≥ (−5) · s− 4

2
+ (−s+ 5) · s+ 4

2

λ1 · x+ λ2 · y ≥
−5s+ 20

2
− s2 − s− 20

2

λ1 · x+ λ2 · y ≥
−s2 − 4s+ 40

2
≡ s2 − 4s+ 8

2
mod s2 − 16,

which is higher than the assumed value b ≤ s2−4s+6
2 . Therefore λ2 ≤ −2x, meaning

|λ1|+ |λ2 + 4x| ≤ |λ1|+ |λ2| ≤ s.

We have established that (λ1, λ2+4x) ∈ Z2([0, s]), and now show that these new
coefficients directly span (a, b). Because λ2 and λ2 + 4x have the same parity, the
first component a of the spanned element remains unchanged. To see that the same
b is directly spanned, observe that

λ1 · x+ (λ2 + 4x) · y = (λ1 · x+ λ2 · y) + 4x · y
λ1 · x+ (λ2 + 4x) · y = −1 · (s2 − 16) + b+ s2 − 16

λ1 · x+ (λ2 + 4x) · y = b.

Therefore the same element (a, b) is also directly spanned by the pair A, as was to
be shown.

Lemma 18. For some s ≡ 2 mod 4, let G = Z2 × Zs2−16 and A = {(0, x), (1, y)}
where x = s−4

2 and y = s+4
2 . For any (a, b) ∈ G with b ∈ [ s

2−4s+8
2 , s

2+4s−42
2 ] that is

negatively spanned by coefficients (λ1, λ2) ∈ Z2([0, s]), the coefficients (λ1−2, λ2+2)
negatively span the element (a, b+ 8) and are also in Z2([0, s]).

Proof. We first show that if the coefficients (λ1, λ2) ∈ Z2([0, s]) negatively span
(a, b), then λ2 ≤ −2. Supposing for contradiction that it isn’t, we split the scenario
into two cases: λ2 = 0 and λ2 ≥ −1 but λ2 6= 0.

In the first case, we have that λ1 ≥ −s, implying

λ1 · x+ λ2 · y ≥ −s ·
s− 4

2

λ1 · x+ λ2 · y ≥
−s2 + 4s

2
≡ s2 + 4s− 32

2
mod s2 − 16,
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which exceeds our presumed range for b. In the second case where λ2 6= 0, we must
have λ1 ≥ −s+ 1 and therefore

λ1 · x+ λ2 · y ≥ −s+ 1 · s− 4

2
+−1 · s+ 4

2

λ1 · x+ λ2 · y ≥
−s2 + 5s− 4

2
+
−s− 4

2

λ1 · x+ λ2 · y ≥
−s2 + 4s− 8

2
≡ s2 + 4s− 40

2
mod s2 − 16,

which also exceeds our presumed range for b. Therefore we must have λ2 ≤ −2.
This bound implies that

|λ1 − 2|+ |λ2 + 2| ≤ |λ1|+ 2 + |λ2| − 2 = |λ1|+ |λ2| ≤ s

and thus (λ1− 2, λ2 + 2) ∈ Z2([0, s]). To conclude our argument we show that these
coefficients span (a, b + 8). First, λ2 + 2 ≡ a mod 2 because it has the same parity
as λ2, and thus the first component a is still spanned. For the second component b
we have

(λ1 − 2) · x+ (λ2 + 2) · y = (λ1 · x+ λ2 · y)− 2 · x+ 2 · y
= b− (s2 − 16)− (s− 2) + (s+ 2)

= b− (s2 − 16) + 4

= b+ 4− (s2 − 16) ≡ b+ 4 mod s2 − 16.

Proposition 19. Take any i ≥ 0, and let ki = s2−16
2 −4i. Then the group Z2×Z2ki

is s-spanned by A = {(0, x), (1, y)} where x = s−4
2 and y = s+4

2 .

Proof. Proposition 16 proves the case where i = 0. Now consider some i ≥ 1 and
its corresponding ki and Z2 × Z2ki . We will prove that the subset Z2 × {0, . . . , ki}
of this group is spanned by A, which suffices by lemma 7 to prove that A spans
the entire group. Any elements (a, b) of this subset that can be directly spanned in
Z2 ×Zs2−16 will also be directly spanned in Z2 ×Z2ki , so we focus our attention on
elements that can only be negatively spanned in our subset of Z2 × Zs2−16. By the

above proposition, this implies that b ∈ [ s
2−4s+8

2 , ki]. If such a b exists, it follows
that

s2 − 4s+ 8

2
≤ ki =

s2 − 16− 8i

2
s2 − 4s+ 8 ≤ s2 − 16− 8i

8i ≤ 4s− 24.
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We show by induction that (a, b + 8i) ∈ Z2 × Zs2−16 can also be negatively
spanned. We repeatedly apply lemma 18 to (a, b), then (a, b + 8), and so on up to
(a, b+8(i−1)) to prove that (a, b+8i) is negatively spanned. The hypothesis of the
lemma holds for all relevant values b+ 8, . . . , b+ 8(i− 1) because by our inequality
above and the given range for b we have

b+ 8(i− 1) ≤ ki + 8(i− 1)

b+ 8(i− 1) ≤ s2 − 16− 8i

2
+ 8(i− 1)

b+ 8(i− 1) ≤ s2 + 8i− 32

2

b+ 8(i− 1) ≤ s2 + 4s− 56

2
<
s2 + 4s− 40

2
,

placing b+ 8(i− 1) within the acceptable range.

We have proven that (a, b+8i) can be negatively spanned in Z2×Zs2−16 by some
coefficients (λ1, λ2) ∈ Z2([0, s]). These coefficients will also span (a, b) ∈ Z2×Z2ki =
Z2 × Zs2−16−8i, as they will clearly span the same value a for the first component,
and for the second component will span

λ1 · x+ λ2 · y = −1 · (s2 − 16) + b+ 8i

λ1 · x+ λ2 · y = −1 · (s2 − 16− 8i) + b,

consequently spanning (a, b) ∈ Z2×Z2ki . Therefore every element in Z2×{0, . . . , ki}
is either directly spanned or negatively spanned by our pair A, implying that Z2 ×
Z2ki is s-spanned by A.

Proposition 20. Given some s ≡ 2 mod 4 and any k ≤ s2−s
2 , let G = Z2 × Z2k.

Then the subset A = {(0, x), (1, y)} where x = s
2 and y = s−2

2 s-spans G, meaning

φ±(Z2 × Z2k, [0, s]) = 2.

Proof. Because s−1 is odd, we apply proposition 11 and find that the set A (s−1)-
spans the group Z2 × Zs2−2s. We will prove that A directly s-spans the subset of

this group Z2 × {0, 1, . . . , s
2−s
2 }, which suffices to prove our claim by lemmas 7 and

10.

By proposition 11, the subset Z2 × {0, 1, . . . , s
2−2s
2 } is already known to be

directly spanned. We divide the rest of the elements in our subset of interest into
four categories:
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1. (0, s
2−2s
2 + 2i) for i ∈ N such that i ≤ s−2

4 ;

2. (1, s
2−2s
2 + 2i) for i ∈ N such that i ≤ s−2

4 ;

3. (0, s
2−2s−2

2 + 2i) for i ∈ N such that i ≤ s+2
4 ; and

4. (1, s
2−2s−2

2 + 2i) for i ∈ N such that i ≤ s+2
4 .

We prove that each subset in turn can be directly s-spanned by A.

Case 1

First, note that for a given i ≤ s−2
4 , we have that

2i · x+ (s− 2i) · y =
2i · s

2
+

(s− 2i)(s− 2)

2

=
2i · s

2
+
s2 − 2s− 2is+ 4i

2

=
s2 − 2s

2
+ 2i,

and that s+ 2i ≡ 0 mod 2. Therefore the coefficients λ1 = 2i, λ2 = s− 2i span the
desired element. To see that they are in Z2([0, s]), observe that for i ≤ s−2

4 we have

|2i|+ |s− 2i| = 2i+ s− 2i = s,

completing our proof for this case.

Case 2

First note that for a given i ≤ s−2
4 , we have that

(y + 2i) · x+ (x− 2i) · y =
(s− 2 + 4i) · s

4
+

(s− 4i) · (s− 2)

4

=
s2 − 2s+ 4is

4
+
s2 − 2s− 4is+ 8i

4

=
s2 − 2s

2
+ 2i,

and that x ≡ 1 mod 2. Therefore the coefficients λ1 = y, λ2 = x span the desired
element. To see that they are in Z2([0, s]), observe that for i ≤ s−2

4 we have

|y + 2i|+ |x− 2i| = y + 2i+ x− 2i = x+ y = s− 1,
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completing our proof for this case.

Case 3

First, note that for a given i ≤ s+2
4 , we have that

(y − 1 + 2i) · x+ (x+ 1− 2i) · y = (xy − x+ 2ix) + (xy + y − 2iy)

= 2xy + (y − x) + 2i(x− y)

=
s2 − 2s

2
− 1 + 2i

and that x+1−2i ≡ 0 mod 2. Therefore the coefficients λ1 = y−1+2i, λ2 = x+1−2i
span the desired element. To see that they are in Z2([0, s]), observe that for i ≤ s+2

4
we have

|y − 1 + 2i|+ |x+ 1− 2i| = s− 4 + 4i

2
+
s+ 2− 4i

2
= s− 1,

completing our proof for this case.

Case 4

First, note that for a given i ≤ s+2
4 , we have that

(−1 + 2i) · x+ (s+ 1− 2i) · y = sy + (y − x) + 2i(x− y)

=
s2 − 2s

2
− 1 + 2i,

and that s+1−2i ≡ 1 mod 2. Therefore the coefficients λ1 = −1+2i, λ2 = s+1−2i
span the desired element. To see that they are in Z2([0, s]), observe that for i ≤ s+2

4
we have

| − 1 + 2i|+ |s+ 1− 2i| = −1 + 2i+ s+ 1− 2i = s,

completing our proof for this case.
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