Signed Spanning Pairs for Noncyclic Groups $\mathbb{Z}_{2} \times \mathbb{Z}_{2 k}$

William Kyle Beatty
Gettysburg College
Gettysburg, PA 17325-1486 USA
E-mail: w.kyle.beatty@protonmail.com

May 13, 2021

Abstract

Given a positive integer s, a noncyclic group of the form $G=\mathbb{Z}_{2} \times \mathbb{Z}_{2 k}$ for some positive integer k, and a subset $A \subset G$, let $[0, s]_{ \pm} A$ denote the $[0, s]$-fold signed sumset of A. We are interested in the case where this signed sumset is the entire group G; in this case we say that A "spans" G. We investigate, for a given s, the maximum value of k such that a subset A with exactly two elements spans G.

This paper extends work done by Haesoo Park in 2020 on this same topic, providing a different proof for the case of odd values of s and a partial result for his conjecture for maximum values of k.

1 Introduction

We first define the main objects of our research, then introduce Park's previous results.

Definition 1. Let s be a positive integer and let $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$. The $[0, s]$-fold signed sumset of A is defined as

$$
[0, s]_{ \pm} A=\left\{\lambda_{1} a_{1}+\lambda_{2} a_{2}+\cdots+\lambda_{m} a_{m}| | \lambda_{1}\left|+\left|\lambda_{2}\right|+\cdots+\left|\lambda_{m}\right| \in[0, s]\right\} .\right.
$$

Definition 2. Let s be a positive integer, G be a group, and A a subset of G. Then A spans G if and only if $[0, s]_{ \pm} A=G$. In this case we call A a spanning set of G, and denote by $\phi_{ \pm}$the size of the smallest spanning set of G for a given s:

$$
\phi_{ \pm}(G,[0, s])=\min \left\{|A| \mid[0, s]_{ \pm} A=G\right\} .
$$

Definition 3. For a group of the form $G=\mathbb{Z}_{2} \times \mathbb{Z}_{2 k}$ for some k, we call the subset $\{0\} \times \mathbb{Z}_{2 k}$ the even elements of G, and the subset $\{1\} \times \mathbb{Z}_{2 k}$ the odd elements of G.

We also include Park's results from [2]:
Theorem 4. Given a positive integer s, let $k=\frac{s^{2}}{2}$ when s is even and $k=\frac{s^{2}-1}{2}$ when s is odd. Then $\phi_{ \pm}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2 k},[0, s]\right)=2$, where the spanning set of $\mathbb{Z}_{2} \times \mathbb{Z}_{2 k}$ is $\{(0,1),(1, s-1)\}$ when s is even and $\left\{\left(1, \frac{s-1}{2}\right),\left(1, \frac{s+1}{2}\right)\right\}$ when s is odd.

Conjecture 5. The value of k found in the theorem above is the largest possible k for which $\phi_{ \pm}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2 k},[0, s]\right)=2$.

Our work provides an alternative proof of Park's theorem with a different spanning set in the case where s is odd, and a result limiting potential counterexamples to Park's conjecture.

2 Main results

Theorem 6. For any odd s, let $k=\frac{s^{2}-1}{2}$ and let $G=\mathbb{Z}_{2} \times \mathbb{Z}_{2 k}=\mathbb{Z}_{2} \times \mathbb{Z}_{s^{2}-1}$. The pair $\{(0, x),(1, y)\}$-spans G, where x and y are defined by

$$
x=\left\{\begin{array}{ll}
\frac{s+1}{2}, & s \equiv 1 \bmod 4 \\
\frac{s-1}{2}, & s \equiv 3 \bmod 4
\end{array} \quad y= \begin{cases}\frac{s-1}{2}, & s \equiv 1 \bmod 4 \\
\frac{s+1}{2}, & s \equiv 3 \bmod 4 .\end{cases}\right.
$$

Theorem 7. If there is a counterexample to Park's conjecture, i.e. some $k>\frac{s^{2}}{2}$ such that

$$
\phi_{ \pm}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2 k},[0, s]\right)=2,
$$

then the spanning pair must be of the form $\{(0, x),(1, y)\}$ for some $x, y \in \mathbb{Z}_{2 k}$.

3 Methods

Theorem 6 [Proof]

We note some basic properties of x and y before continuing:

- x is always odd, and y is always even.
- $x+y=s$
- $4 x y=4 \cdot \frac{s^{2}-1}{4}=s^{2}-1$
- x and y are coprime because they differ by 1 .

Given an arbitrary element $r \in G$, we show that there are coefficients λ_{1}, λ_{2} that span r.

The span of $(0, x)$ will form a subgroup $H \leq G$ of order $\frac{s^{2}-1}{x}=4 y$, by our third identity above. This subgroup will have $\frac{|G|}{4 y}=2 x$ corresponding cosets. The element r must lie in one of these cosets, so we will show that each of these cosets can be reached by some multiple of $(1, y)$.

We show that for each $\mu \in[0,2 x-1]$, the product $\mu \cdot(1, y)$ reaches a different one of the $2 x$ cosets of H. Because there are $2 x$ different values μ, this implies that $\mu \cdot(1, y)$ reaches every coset of H.

To show that no two μ reach the same coset, we take two distinct $\mu_{1}, \mu_{2} \in$ $[0,2 x-1]$, and assume without loss of generality that $\mu_{1}>\mu_{2}$. Two elements are in the same coset of H if their difference is in H, so we prove our claim by showing that $\left(\mu_{1}-\mu_{2}\right) \cdot(1, y) \notin\langle(0, x)\rangle$. Let $\mu^{\prime}=\mu_{1}-\mu_{2} \in[1,2 x-1]$. If $\mu^{\prime} \cdot(1, y) \in\langle(0, x)\rangle$, then there is some c such that

$$
\mu^{\prime} \cdot(1, y)=c \cdot(0, x) .
$$

Because x and y are coprime, the only $\mu^{\prime} \in[1,2 x-1]$ to possibly satisfy the equation is x. However, because x is odd, the element $x \cdot(1, y)$ is also odd, and cannot be in the span of $(0, x)$.

The above implies that $(1, y)$ reaches all $2 x$ cosets of $\langle(0, x)\rangle$. Therefore, for any coset of $\langle(0, x)\rangle$, there is some $\lambda_{2} \in[0,2 x-1]$ such that $\lambda_{2} \cdot(1, y)$ is in the
coset. Because each coset is of order $4 y$, then if r is in the coset, there is some $\lambda_{1} \in[-2 y+1,2 y]$ such that $\lambda_{1} \cdot(0, x)+\lambda_{2} \cdot(1, y)=r$. We now turn our attention to the magnitude of the coefficients λ_{1}, λ_{2}.

To say that the pair spans r, we must have λ_{1}, λ_{2} such that

$$
\lambda_{1} \cdot(0, x)+\lambda_{2} \cdot(1, y)=r \quad \text { and } \quad\left|\lambda_{1}\right|+\left|\lambda_{2}\right| \in[0, s] .
$$

By their selection above, we know that $\lambda_{1} \in[-2 y+1,2 y]$ and $\lambda_{2} \in[0,2 x-1]$, and therefore that

$$
\left|\lambda_{1}\right|+\left|\lambda_{2}\right| \in[0,2 y+2 x-1]=[0,2 s-1] .
$$

If $\left|\lambda_{1}\right|+\left|\lambda_{2}\right| \in[0, s]$, we are done. If, however, $\left|\lambda_{1}\right|+\left|\lambda_{2}\right| \in[s+1,2 s-1]$, we must find new $\lambda_{1}^{\prime}, \lambda_{2}^{\prime}$ that yield the same element while remaining within the bounds. We address this case as the final component of the proof.

Choose $\lambda_{1}^{\prime}, \lambda_{2}^{\prime}$ as follows:

$$
\lambda_{1}^{\prime}=\left\{\begin{array}{ll}
\lambda_{1}-2 y, & \lambda_{1} \geq 0 \\
\lambda_{1}+2 y, & \lambda_{1}<0
\end{array} \quad \lambda_{2}^{\prime}=\lambda_{2}-2 x\right.
$$

These definitions and our selection of λ_{1}, λ_{2} imply that

$$
\left|\lambda_{1}^{\prime}\right|=2 y-\left|\lambda_{1}\right| \quad \text { and } \quad\left|\lambda_{2}^{\prime}\right|=2 x-\left|\lambda_{2}\right| .
$$

Consequently

$$
\begin{aligned}
& \left|\lambda_{1}^{\prime}\right|+\left|\lambda_{2}^{\prime}\right|=2 y-\left|\lambda_{1}\right|+2 x-\left|\lambda_{2}\right| \\
& \left|\lambda_{1}^{\prime}\right|+\left|\lambda_{2}^{\prime}\right|=2(x+y)-\left(\left|\lambda_{1}\right|+\left|\lambda_{2}\right|\right) \\
& \left|\lambda_{1}^{\prime}\right|+\left|\lambda_{2}^{\prime}\right|=2 s-\left(\left|\lambda_{1}\right|+\left|\lambda_{2}\right|\right) .
\end{aligned}
$$

Recalling that $\left|\lambda_{1}\right|+\left|\lambda_{2}\right| \in[s+1,2 s-1]$, the above implies that $\left|\lambda_{1}^{\prime}\right|+\left|\lambda_{2}^{\prime}\right| \in$ $[1, s-1]$, which is within the acceptable bounds for the coefficients.

Finally, we verify that $\lambda_{1}^{\prime}, \lambda_{2}^{\prime}$ span the same element $r \in G$ as the original coefficients λ_{1}, λ_{2}.

If $\lambda_{1} \geq 0$, and therefore $\lambda_{1}^{\prime}=\lambda_{1}-2 y$:

$$
\begin{aligned}
\lambda_{1}^{\prime} \cdot(0, x)+\lambda_{2}^{\prime} \cdot(1, y) & =\left(\lambda_{1}-2 y\right) \cdot(0, x)+\left(\lambda_{2}-2 x\right) \cdot(1, y) \\
& =\left[\lambda_{1} \cdot(0, x)+\lambda_{2} \cdot(1, y)\right]-[2 y \cdot(0, x)+2 x \cdot(1, y)] \\
& =r-(0,4 x y) \\
& =r-\left(0, s^{2}-1\right) \\
& =r-(0,0) \\
\lambda_{1}^{\prime} \cdot(0, x)+\lambda_{2}^{\prime} \cdot(1, y) & =r
\end{aligned}
$$

In the final case where $\lambda_{1}<0$ and $\lambda_{1}^{\prime}=\lambda_{1}+2 y$

$$
\begin{aligned}
\lambda_{1}^{\prime} \cdot(0, x)+\lambda_{2}^{\prime} \cdot(1, y) & =\left(\lambda_{1}+2 y\right) \cdot(0, x)+\left(\lambda_{2}-2 x\right) \cdot(1, y) \\
& =\left[\lambda_{1} \cdot(0, x)+\lambda_{2} \cdot(1, y)\right]-2 y \cdot(0, x)+2 x \cdot(1, y) \\
& =r-(0,2 x y)+(0,2 x y) \\
\lambda_{1}^{\prime} \cdot(0, x)+\lambda_{2}^{\prime} \cdot(1, y) & =r .
\end{aligned}
$$

Thus we have proven that $\lambda_{1}^{\prime}, \lambda_{2}^{\prime}$ are within the bounds for coefficients and span the arbitrary element $r \in G$.

Theorem 7 [Proof]

Clearly no pair of the form $\{(0, x),(0, y)\}$ can span G. We now prove that no pair of the form $\{(1, x),(1, y)\}$ can span G for some $k>\frac{s^{2}}{2}$.

First, note that the parity of $\left|\lambda_{1}\right|+\left|\lambda_{2}\right|$ corresponds to the parity of the element spanned by the coefficients, $\lambda_{1} \cdot(1, x)+\lambda_{2} \cdot(1, y)$ - if one is even or odd, then the other must be even or odd, respectively. Due to this correspondence we call a coefficient pair $\left(\lambda_{1}, \lambda_{2}\right)$ even or odd according to the parity of $\left|\lambda_{1}\right|+\left|\lambda_{2}\right|$.

We view these pairs of coefficients $\left(\lambda_{1}, \lambda_{2}\right)$ as elements of the two-dimensional integer lattice $\mathbb{Z}^{2}([0, s])$, where $\left|\lambda_{1}\right|+\left|\lambda_{2}\right| \in[0, s]$. By the table found in [1, p. 28], we have

$$
\begin{equation*}
\left|\mathbb{Z}^{2}([0, s])\right|=2 s^{2}+2 s+1 \tag{1}
\end{equation*}
$$

We can further divide this set of coefficient pairs into layers of the integer lattice: for some $h \in[0, s]$, its corresponding layer is defined as

$$
\mathbb{Z}^{2}(h)=\left\{\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{Z}^{2}| | \lambda_{1}\left|+\left|\lambda_{2}\right|=h\right\} .\right.
$$

We note another identity from [1, p. 28]:

$$
\left|\mathbb{Z}^{2}(h)\right|= \begin{cases}4 h, & h \geq 1 \tag{2}\\ 1, & h=0\end{cases}
$$

All coefficient pairs in $\mathbb{Z}^{2}(h)$ will be even if h is even and be odd if h is odd. By our observation above, their corresponding sum $\lambda_{1} \cdot(1, x)+\lambda_{2} \cdot(1, y)$ will then be even or odd, respectively. We will prove that, for $k>\frac{s^{2}}{2}$, there are either insufficient odd elements of $\mathbb{Z}^{2}([0, s])$ to span the odd elements of G, or insufficient even elements of $\mathbb{Z}^{2}([0, s])$ to span the even elements of G.

Let $E(s)$ denote the set of even coefficient pairs in $\mathbb{Z}^{2}([0, s])$ and let $O(s)$ denote the set of odd coefficient pairs in $\mathbb{Z}^{2}([0, s])$. Therefore by identity (1) we have

$$
\begin{equation*}
|E(s)|+|O(s)|=\left|\mathbb{Z}^{2}([0, s])\right|=2 s^{2}+2 s+1 \tag{3}
\end{equation*}
$$

Now we calculate, using identity (2), the number of even coefficient pairs $|E(s)|$ for even s

$$
\begin{aligned}
E(s) & =\mathbb{Z}^{2}(0) \cup \mathbb{Z}^{2}(2) \cup \cdots \cup \mathbb{Z}^{2}(s) \\
|E(s)| & =\left|\mathbb{Z}^{2}(0)\right|+\left|\mathbb{Z}^{2}(2)\right|+\cdots+\left|\mathbb{Z}^{2}(s)\right| \\
|E(s)| & =1+4 \cdot 2+\cdots+4 \cdot s \\
|E(s)| & =1+4 \cdot(2+4+\cdots+s) \\
|E(s)| & =1+8 \cdot\left(1+2+\cdots+\frac{s}{2}\right) \\
|E(s)| & =1+8 \cdot \frac{\frac{s}{2} \cdot\left(\frac{s}{2}+1\right)}{2} \\
|E(s)| & =1+8 \cdot \frac{s^{2}+2 s}{8} \\
|E(s)| & =s^{2}+2 s+1 .
\end{aligned}
$$

By identity (3), this implies that $|O(s)|=s^{2}$ for even s. Now consider the quantity $|E(u)|$ for some odd u. Because u is odd, no elements of $\mathbb{Z}^{2}(u)$ are in $E(u)$, yielding

$$
\begin{aligned}
E(u) & =\mathbb{Z}^{2}(0) \cup \mathbb{Z}^{2}(2) \cup \cdots \cup \mathbb{Z}^{2}(u-1) \\
E(u) & =E(u-1) \\
|E(u)| & =(u-1)^{2}+2(u-1)+1 \\
|E(u)| & =u^{2} .
\end{aligned}
$$

Because of the correspondence between even (odd) coefficient pairs and even (odd) spanned elements, the quantities $|E(s)|$ and $|O(s)|$ represent the maximum number of even and odd elements spanned by a pair of elements $\{(1, x),(1, y)\}$.

Consider the group $G=\mathbb{Z}_{2} \times \mathbb{Z}_{2 k}$ for any $k>\frac{s^{2}}{2}$. Because $2 k>s^{2}$, there will be more than s^{2} even and odd elements in G. If s is even, implying that $|O(s)|=s^{2}$, then the pair does not span enough odd elements to span all of G. If s is odd, and therefore $|E(s)|=s^{2}$, the pair does not span enough even elements to span all of G. Therefore no pair of the form $\{(1, x),(1, y)\}$ can span G for $k>\frac{s^{2}}{2}$.

No pair of even elements or pair of odd elements can span G for $k>\frac{s^{2}}{2}$, so any spanning pair for such a G must contain one even and one odd element: $\{(0, x),(1, y)\}$.

4 Future work

A proof of Conjecture 5 remains elusive, and the difference in proof of Theorem 4 for even and odd values of s suggests that a proof of the conjecture may require two parts.

Acknowledgments. I thank Professor Béla Bajnok for directing me toward this problem and helping me through the research process, and Haesoo Park for leading the way with his work on the subject. I would also like to thank Matt Torrence for his additive combinatorics software library, which helped me find the new spanning pair used in my proof.

References

[1] Béla Bajnok. Additive Combinatorics: A Menu of Research Problems. CRC Press, 2018.
[2] Haesoo Park. "Finding a Pair that Spans $\mathbb{Z}_{2} \times \mathbb{Z}_{2 k}$ ". In: Research Papers in Mathematics 23 (2020). Ed. by Béla Bajnok.

